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Abstract

Deep learning models have a risk of utilizing spurious
clues to make predictions, such as recognizing actions based
on the background scene. This issue can severely degrade the
open-set action recognition performance when the testing
samples have different scene distributions from the train-
ing samples. To mitigate this problem, we propose a novel
method, called Scene-debiasing Open-set Action Recogni-
tion (SOAR), which features an adversarial scene reconstruc-
tion module and an adaptive adversarial scene classification
module. The former prevents the decoder from reconstruct-
ing the video background given video features, and thus
helps reduce the background information in feature learning.
The latter aims to confuse scene type classification given
video features, with a specific emphasis on the action fore-
ground, and helps to learn scene-invariant information. In
addition, we design an experiment to quantify the scene bias.
The results indicate that the current open-set action recog-
nizers are biased toward the scene, and our proposed SOAR
method better mitigates such bias. Furthermore, our exten-
sive experiments demonstrate that our method outperforms
state-of-the-art methods, and the ablation studies confirm
the effectiveness of our proposed modules.

1. Introduction

Recent years have witnessed significant progress in ac-
tion recognition [10, 69, 70, 41, 20, 77, 79, 26, 72]. Yet,
most works follow a closed-set paradigm, where both train-
ing and testing videos belong to a set of pre-defined action
categories. This limits their application as the real world
is naturally open with unknown actions. Open-set recogni-
tion is proposed to identify unknown samples from known
ones while maintaining classification performance on known
samples [57, 31, 4]. It is challenging due to missing knowl-
edge of the unknown world. Moreover, deep models are
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Figure 1. Scene-biased open-set action recognizers fail in two typi-
cal scenarios: known actions in unfamiliar scenes, and unknown
actions in familiar scenes. The former leads to low precision on
open-set detection, while the latter leads to low recall. Our method
focuses on mitigating the scene bias to improve OSAR.

found to rely on spurious information to make predictions,
e.g., classify images using local textures [24, 44] and rec-
ognize actions using background scene [40, 13]. This not
only hurts the performance under the closed-set setting when
training and testing sets are not independent and identically
distributed, but also severely degrades the open-set recogni-
tion performance, as the distribution of the open-set testing
set is unknown.

Open-set action recognition (OSAR) is especially vul-
nerable to the spurious information for two main reasons:
(1) current benchmark datasets are found to be severely bi-
ased, and action classification using non-action information
(e.g., scene, object, or human) achieves high accuracy [40];
(2) without a specific module design, the model tends to fo-
cus on static information learning instead of temporal action
modeling [83, 16, 59, 68, 52].

This paper focuses on mitigating the scene bias in OSAR:
we speculate that current OSAR methods are biased toward
the scene, and the performance degrades when the testing
set exhibits different scene distributions from the training
set. Specifically, existing methods may fail in two typical
scenarios: known action in unfamiliar scene and unknown
action in familiar scene, as illustrated in Fig. 1. For the



former scenario, a scene-biased recognizer would falsely rec-
ognize the action as unknown given the scene is unfamiliar
to the training set, and lowers the OSAR precision. For the
latter scenario, a scene-biased recognizer may falsely recog-
nize the unknown action as known if a familiar scene has
appeared during training, which further lowers the OSAR
recall. Consequently, the two above situations degrade the
overall OSAR performance. To verify our speculations, a
quantitative scene bias analysis experiment is carried out
in Sec. 3, and the results reveal a strong correlation between
the testing scene distribution shift and OSAR performance.

To mitigate scene bias, we propose a Scene-debiasing
Open-set Action Recognition method (SOAR), which fea-
tures an adversarial scene reconstruction module (AdRecon)
and an adaptive adversarial scene classification module
(AdaScls). As shown in Fig. 3, we formulate the OSAR
task as an uncertainty estimation problem, where the recent
evidential deep learning is leveraged to quantify the second-
order prediction uncertainty [58, 1, 3, 39]. To mitigate scene
bias, AdRecon promotes the backbone to reduce scene infor-
mation by applying adversarial learning between a decoder
and the backbone. Meanwhile, AdaScls encourages the back-
bone to learn scene-invariant feature by preventing a scene
classifier from predicting the scene type of input videos.

Specifically, for AdRecon, our intuition stems from the
observation that reconstruction autoencoders prioritize re-
constructing the low-frequency part of the input [29], which
typically corresponds to the static scene in the video domain.
Therefore, we regard the decoder that takes as input video
feature and reconstructs the video as a scene information
extractor. By applying adversarial learning between the de-
coder and the encoder, AdRecon promotes the encoder (i.e.,
the feature backbone) to reduce scene information within
the output feature. Furthermore, to reduce the noise from re-
constructing the foreground motion, we propose background
estimation and uncertainty-guided reconstruction to make
the decoder focus on background scene reconstruction, thus
preserving motion information during adversarial learning.

For AdaScls, instead of only conducting video-level ad-
versarial scene classification as in [13], we propose to adap-
tively apply weights on the background and foreground lo-
cations: higher weights on the action foreground and lower
weights on the background scene, where the background and
foreground locations are determined by the learned spatio-
temporal uncertainty map. As a result, AdaScls prioritizes
debiasing on the foreground, and promotes scene-invariant
action feature learning.

Extensive experiments performed on UCF101 [63],
HMDB51 [38] and MiTv2 [45] demonstrate the effective-
ness of our proposed modules, and show our SOAR achieves
state-of-the-art OSAR performance. Besides, quantita-
tive scene bias analysis experiments reveal that our SOAR
achieves the lowest scene bias compared to previous arts.

To summarize, our contributions are threefold:

• We design a quantitative experiment to analyze the scene
bias of current OSAR methods. The results reveal a strong
correlation between testing scene distribution shift and
OSAR performances. Our SOAR achieves the lowest
scene bias while outperforming state-of-the-art OSAR
methods, demonstrating the effectiveness of our debias
method.

• We propose an adversarial scene reconstruction module.
By preventing a decoder from reconstructing the video
background from the extracted feature, AdRecon forces
the backbone to reduce scene information from the feature
while preserving motion information.

• We propose an adaptive adversarial scene classification
module, which prevents a scene classification head from
predicting the scene type of the video. Benefiting from
additional guidance from the learned uncertainty map,
AdaScls promotes effective scene-invariant feature learn-
ing.

2. Related work
Action recognition in the closed-set setting has been widely
exploited in recent years. Two-stream convolutional net-
works [62] use two separate networks to learn appearance
and motion from RGB frames and optical flow, respectively.
I3D [10] expands the 2D CNNs in the two-stream network
to 3D CNNs, and significantly improves recognition perfor-
mance. Due to the expensive cost of optical flow estimation,
several recent works [83, 16, 59, 68, 52] try to learn motion
information from raw videos directly. In this paper, we also
aim to learn motion information with only RGB frames input
to reduce the data process cost.
Open-set recognition aims to recognize testing samples
that do not belong to the training classes [56]. There are
mainly two groups of work for open-set recognition, i.e.,
discriminative methods and generative methods [25]. For
discriminative models, several traditional methods leverage
support vector machines to reject the unknown [57, 31, 4].
OpenMax [5] first adopts deep learning models in the open
set recognition problem, where it redistributes the soft-
max output to estimate the uncertainty. DOC [60] pro-
poses a 1-vs-rest layer to replace the softmax layer and
tighten the decision boundary. Recently, several methods
explicitly model the potential open-set samples in the latent
space, and promote a more discriminative decision bound-
ary [12, 86, 11]. Generative methods explicitly generate
samples of unknown/known classes, thus helping learn a
better decision boundary [23, 18, 50, 11, 34, 80, 86, 78].
Specifically, several methods [78, 47, 65] leverage the au-
toencoder to reconstruct the input, and use the reconstruction
error to determine open-set samples.
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(a) Analysis on the known action in unfamiliar scene scenario. The perfor-
mances of OSAR methods degrade when closed-set testing samples exhibit
unfamiliar scenes to the training set.
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(b) Analysis on the unknown action in familiar scene scenario. The perfor-
mances of OSAR methods degrade when open-set testing samples exhibit
familiar scenes to the training set.

Figure 2. Quantitative scene bias analysis using UCF101 [63] as known and MiTv2 [45] as unknown. Our SOAR is least affected by scene.

Most of the above methods focus on the image domain.
For the OSAR problem, ODN [61] detects new categories by
applying a multi-class triplet thresholding method. Busto et
al. [9] propose an approach for open-set domain adaptation
on action recognition. Several methods [36, 64, 37, 3] focus
on learning the uncertainty of unknown classes. Specifically,
Bayesian neural networks are widely adopted in the action
domain [36, 64, 37]. Recently, evidential deep learning [58,
1, 3, 39] shows great potential in uncertainty estimation and
achieves superior performances [3] in OSAR.

Debias has been a challenging task in machine learning.
Previous works in the image domain include mitigating the
gender bias [7, 81, 8, 28], and texture bias [24, 30]. Sev-
eral methods address this problem with adversarial learn-
ing [76, 82, 19, 75, 33, 13, 74, 73], where the label of the
debias target can be extracted with off-the-shelf pretrained
models. ContraCAM [44] alleviates the scene bias in image
object, where contrastive learning is used to automatically
determine the discriminative regions. In action recognition,
Resound [40] analyzes the scene/object/people bias exist-
ing in current datasets. DEAR [3] introduces ReBias [2]
to open-set action recognition, and mitigates static bias by
forcing the features learned from the original video and shuf-
fled/static videos to be independent. Notably, ReBias [2]
requires simultaneously training several backbones, while
we only train one backbone with a light-weight decoder and
classification heads, greatly reducing the computational bur-
den. Choi et al. [13] also leverages an adversarial scene
classification module; however, they conduct adversarial
learning on the whole frame instead of considering specific
scene locations. We propose a guide loss to direct the ad-
versarial classification on the foreground, thus to promote
effective scene-invariant feature learning. We show in the
supplement that our SOAR outperforms the aforementioned

debias methods [2, 13, 44].

3. The effect of the scene in OSAR
As illustrated in Fig. 1, we speculate that existing OSAR

methods are vulnerable to scene bias under two typical set-
tings: known action in unfamiliar scene and unknown action
in familiar scene. To measure the severity of existing meth-
ods affected by the two problems, we conduct the following
quantitative experiments.
Settings. The following describes the experimental setup to
analyze the first known action in unfamiliar scene problem,
and the setup for the second problem can be conducted simi-
larly. Our essential goal is to build different combinations
of testing sets, such that each testing set contains different
closed-set testing samples that exhibit different scene simi-
larities to the training set while keeping the open-set testing
samples the same, and observe how these different combina-
tions of testing sets affect performances of existing OSAR
methods. Specifically, we first use an off-the-shelf scene
classifier to extract the scene features fscene on each training
and testing video. After that, for each closed-set testing
video, we compute its scene feature cosine distance to all
training videos, and use the minimal distance to indicate
the scene distance between this testing video and the train-
ing set. Subsequently, we sort all closed-set testing videos
with their scene distance to the training set, and divide them
into several non-overlapping equal-sized subsets. For each
closed-set testing subset with size L, we define its scene
distance to the training set d as the average of minimal scene
feature cosine distance between each testing video and all
training videos:

d =
1

L

L∑
i=1

min
j

(1− uivj) , (1)
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Figure 3. Framework overview. Our SOAR consists of four major modules: the feature extraction module extracts spatio-temporal features
from the input video; the evidential deep learning module estimates the prediction uncertainty and outputs the spatio-temporal uncertainty
map; the adversarial scene reconstruction module (AdRecon) reconstructs the video background; the adaptive adversarial scene classification
module (AdaScls) predicts the scene in the video. The latter two modules are trained in an adversarial way to learn scene-invariant features.

where the unit vectorui, and vj are normalized scene feature
fscene of the i-th testing video and the j-th training video,
respectively. Finally, we fix the open-set testing set and com-
bine it with different closed-set testing subsets, and observe
how the performances change. Note that we additionally en-
sure that each closed-set subset is class-balanced, such that
all testing set combinations achieve the same openness [56],
which measures how open the testing environment is.
Datasets and evaluation. We perform the experiments with
the UCF101 training set for training [63], UCF101 validation
set as closed-set testing set and MiTv2 validation set as open-
set testing set [45]. Two metrics are used to quantify the
scene bias: the variance of the OSAR AUCs under different
testing combinations, and the absolute value of the linear
fitting slope of the performance change curves. We note that
all methods exhibit Pearson correlation coefficients between
OSAR AUC and d larger than 0.7, which indicates a strong
linear correlation and justifies the use of linear slope for
evaluation. We divide the closed-set/open-set testing set into
20 subsets to conduct the two evaluations, respectively.
Analysis. Our SOAR is compared to previous methods [21,
36, 3] in Fig. 2. The analysis of known action in unfamiliar
scene is presented in Fig. 2a. A clear performance decrease
trend is observed as the scene distance between the closed-
set testing set and the training set increases. The results
suggest that current OSAR methods rely on the scenes to
make predictions: known actions with familiar scenes are
easier to recognize, while those with unfamiliar scenes are
harder to recognize. Fig. 2b analyzes the unknown action
in familiar scene counterpart, where we also observe a clear
increasing trend as the scene distance between the open-set

testing set and the training set increases, indicating unknown
actions with unfamiliar scenes are easier to recognize. Both
figures show a strong correlation between the scene distance
and the OSAR performance, suggesting that the scene is an
essential cue for open-set recognition. Moreover, we find
that our SOAR achieves the lowest variance and absolute
slope, showing its scene-debiasing capability.

4. Method

The overview of our proposed SOAR is illustrated
in Fig. 3. Given an input video, SOAR predicts an uncer-
tainty score that measures how likely this video contains
known actions that are used for training. To mitigate scene
bias, we aim to suppress the performance of scene-related
tasks (reconstruction and classification) while maintaining
the action recognition performance. This reduces the scene
information in the learned debiased representation, such that
the following uncertainty estimation process will be less
dependent on the scene.

4.1. Evidential deep learning

To distinguish the known and unknown samples, a scoring
function is needed to measure the likelihood that the samples
are unknown. To this end, we leverage the recent evidential
deep learning (EDL) methods [17, 32, 58, 1, 3, 39] for uncer-
tainty estimation, which mitigates the over-confident [46, 67]
and computationally costly [6, 21, 15] problems of existing
uncertainty estimators. Essentially, for the C-way classifica-
tion, EDL first collects the evidence that supports the given
sample to be classified into a particular class and then builds



a Dirichlet class probability distribution parameterized over
the evidence. The resulting distribution models the second-
order class probabilities and uncertainty. We refer readers
unfamiliar with EDL to [58].

Specifically, denote the input video as X ∈
RH×W×T×D, where H,W, T and D represent height,
width, number of frames and channels, respectively. The
backbone Gf (·) maps it into a spatio-temporal feature map
F ∈ RH′×W ′×T ′×D′

, which is further average pooled as
a feature vector f ∈ RD′

. The EDL head He(·) takes as
input the feature vector f , and predicts a non-negative evi-
dence vector e = He(f) ∈ RC≥0, which parameterizes the
following Dirichlet class probability distribution:

D(p|α) =

{
1

B(α)Π
C
j=1p

αj−1
j for p ∈ SC ,

0 otherwise,
(2)

where SC is the C-dim unit simplex, αj = ej +1, and B(α)
is the C-dim multinomial beta function [58]. Thus, the cross
entropy action classification loss reduces to the following:

LEDL =

C∑
i=1

yi
(

logS − logαi
)
, (3)

where y is the one-hot label vector, S =
∑C
i=1 αi is the the

total strength of the Dirichlet distribution. During inference,
the class probability is given as the mean of the Dirichlet
distribution p = α/S, and the prediction uncertainty is
deterministically given as u = C/S. As the EDL head
estimates the uncertainty relying on the feature vector f , we
aim to reduce scene information in f , so that the uncertainty
estimation process is less dependent on the scene. Scene
debias is accomplished by the following two modules via
adversarial training.

4.2. Adversarial scene reconstruction

We take inspiration from reconstruction-based video
anomaly detection methods, where locations with abnor-
mal motions typically incur high reconstruction errors [54].
In action recognition, we empirically find that such recon-
struction prioritizes reconstructing static background scene,
while achieving low reconstruction quality on the action-
related foreground. Thus, our AdRecon adds a decoder to
reconstruct the video background. By regarding the decoder
as a scene information extractor, we force the learned feature
F not to contain scene information to hinder scene recon-
struction in an adversarial learning manner.

Specifically, given spatio-temporal feature tensor F , we
feed it into a decoder Hd(·) to reconstruct the raw video
frames: X̂ = Hd(Rλd(F )). Rλd(·) is a gradient reversal
layer [22, 13] that acts as an identity function during for-
ward propagation, and reverses the gradient by a factor of
λd during backward propagation: dRλd (X)

dX = −λdI , where

I is an identity matrix. In this way, the reconstruction loss
is adversarial in that it forces the backbone Gf (·) to reduce
the scene information contained in the output feature F to
hinder reconstruction (i.e., maximize the loss), while en-
couraging the decoder to extract the scene information from
the feature for reconstruction (i.e., minimize the loss). De-
spite its simplicity, such adversarial reconstruction inevitably
loses motion information, as the action-related foreground
is also involved in this process. We address this problem by
enforcing the decoder to focus on reconstructing the back-
ground with two additional designs: background estimation
and uncertainty-weighted reconstruction.

Background estimation. Instead of using raw framesX as
the reconstruction target, we propose to use the video back-
ground X̄ for the adversarial reconstruction, such that the
foreground action information will not be removed from the
feature. To achieve background estimation, we leverage the
temporal median filter (TMF), which has been demonstrated
as an effective background estimation method [43, 66, 55].
Specifically, for a given pixel location, the most frequently
repeated intensity in a sequence of frames is most likely to
be the background value for that scene [51, 42]. Thus, TMF
takes the pixel-wise temporal median in a sliding window
on a frame sequence as the corresponding background. We
denote the background clip of the video as X̄ , which is used
as the reconstruction target.

Uncertainty-weighted reconstruction. Despite the simplic-
ity and effectiveness of TMF, it extracts inferior background
in videos with static foreground (e.g., apply eye makeup),
which further disturbs adversarial scene reconstruction. To
address this problem, we leverage the spatio-temporal uncer-
tainty map. Similarly to the class activation map [84], we
apply the EDL head onto the spatio-temporal feature F to
generate a spatio-temporal evidence map E = He(F ) ∈
RH′×W ′×T ′×C . The evidence map E can be converted to a
spatio-temporal uncertainty map U ∈ RH′×W ′×T ′

accord-
ing to DST [17]: ui,j,t = C/

∑
c(ei,j,t,c + 1), where ui,j,t

is the element of U at index i, j, t.

Intuitively, similar to the class activation map that in-
dicates discriminative locations that respond to the class
label [49, 53], the obtained uncertainty map is expected to
indicate locations that are discriminative for action recog-
nition (i.e., foreground) with low uncertainty, while high
uncertainty indicates the background scene. Meanwhile,
considering that the reconstruction task should focus on the
background scene while neglecting the foreground action,
the uncertainty map can serve as a weight map to guide the
reconstruction. Specifically, scene locations with high un-
certainties are assigned higher weights for reconstruction,
so that the backbone Gf (·) will focus on removing informa-
tion at these locations to disturb reconstruction. The final
reconstruction loss Lrecon is formulated as a weighted L1



loss:

Lrecon =
1

HWTD

∑
i,j,t,d

u′i,j,t‖x̄i,j,t,d − x̂i,j,t,d‖1, (4)

where u′i,j,t is the element of U ′ at index i, j, t defined in
Eq. (5). Specifically, since U has different spatio-temporal
resolution from our reconstruction target X̄ , we upsample
it to have the same size as X̄ . Additionally, min-max nor-
malization is applied on U , such that U ′ ranges from 0
to 1, meaning that the most confident locations will have
no reconstruction loss, while the most uncertain locations
have the largest reconstruction weight as 1. These steps are
formulated as follows:

U ′ = up (norm(U)) , (5)

where up(·) is the trilinear interpolation upsampling function,
and norm(·) is the min-max normalization.

4.3. Adaptive adversarial scene classification

To further facilitate scene-invariant action feature learn-
ing, we propose AdaScls for adaptive adversarial video scene
classification. Denote the scene label as ys ∈ RN , where
N is the number of pre-defined scene classes. The scene
classification head Hs(·) predicts the video-level scene type
given feature vector f as ŷs = Hs(Rλs(f)), where λs is the
gradient reversal weight. The adversarial scene classification
is achieved via a cross-entropy classification loss Ls cls:

Ls cls = − 1

N

N∑
i=1

ys,i log
exp(ŷs,i)∑N
j=1 exp(ŷs,j)

. (6)

Despite previous exploration [13], we note that blindly
performing adversarial scene classification on the whole
video may yield suboptimal OSAR results. As video scene
classification tends to focus on static cues [40], this can cause
the action foreground to be disregarded during the adversar-
ial classification, hindering the learning of scene-invariant
action feature. This issue becomes more pronounced when
there is a strong correlation between the action foreground
and the scene. To mitigate this problem, we propose to direct
the adversarial scene classification towards the foreground
locations.

In our AdaScls, we use the uncertainty map U to adap-
tively guide the learning of scene classification, so that the
adversarial classification focuses on the foreground loca-
tions. Specifically, the scene class activation map M ∈
RH′×W ′×T ′

can be obtained by passing the feature map F
to the scene classification head mi,j,t = Hs(Rλs(F ))i,j,t,n,
where n = argmax

i
ys,i. The uncertainty guidance is ac-

complished by maximizing the difference between the nor-
malized uncertainty map and the scene class activation map.

As both terms are within range [0, 1], we minimize the L1
distance between 1− norm(U) and norm(M) as a proxy:

Ls guide =
1

HWT

∑
i,j,t

‖1−norm(U)i,j,t−norm(M)i,j,t‖1.

(7)

4.4. Model training

The overall training loss L is a weighted sum of the evi-
dential learning loss LEDL, adversarial scene reconstruction
loss Lrecon, adversarial scene classification loss Ls cls and the
scene guide loss Ls guide:

L = LEDL +wreconLrecon +ws clsLs cls +ws guideLs guide (8)

where wrecon, ws cls and ws guide are weight hyperparameters.

5. Experiments
Datasets. We follow DEAR [3] to use three datasets for
evaluation: UCF101 [63], HMDB51 [38] and MiTv2 [45].
We use the training split 1 from UCF101 for training, which
consists of 9, 537 videos from 101 classes. For testing, val-
idation split one from UCF101 is used as known samples,
and testing split 1 of HMDB51 and the testing set of MiTv2
are respectively used as unknown samples. The HMDB51
testing set consists of 1, 530 videos from 51 classes, thus
the openness of testing combination UCF101 + HMDB51
is 10.6%; the MiTv2 testing set consists of 30, 500 videos
from 305 classes, achieving an openness of 36.9%. Note
that openness measures how open the testing environment is,
and increases as the number of testing classes increases [56].
We only use the MiTv2 dataset for the scene bias evaluation,
as reported in Sec. 3. Note that HMDB51 is a relatively
small dataset, which prevents it from splitting into multiple
subsets to perform the scene bias evaluation.
Evaluation metrics. We use accuracy on the closed testing
set for closed-set classification evaluation. For binary open-
set recognition, we use the area under the receiver operating
characteristic curve (AUC), false alarm rate at a true positive
rate of 95% (FAR@95) and the true positive rate at a false
positive rate of 10% (TPR@10) for evaluation. For the C
+ 1 way classification (i.e., the C known classes and the
unknown class), we follow DEAR [3] to report the mean and
variance of open macro F1 (open maF1), which weighted
sums the macro F1 for the C+1 way classification under
different openness points. Note that open macro F1 is a
threshold-dependent metric and the uncertainty threshold is
set to the maximal training uncertainty. We use AUC as the
main metric, as FAR@95 and TPR@10 are only applicable
for particular points on the ROC curve, while open maF1 is
sensitive to the threshold value.
Implementation details. Our method is implemented with
MMAction2 [14], a toolbox based on PyTorch [48]. Ki-
netics400 [10] pre-trained ResNet50-based I3D [27, 10] is



Methods UCF101 [63]+MiTv2 [45] UCF101 [63]+HMDB51 [38] Closed-set
AUC ↑ FAR@95 ↓ TPR@10 ↑ Open maF1 ↑ AUC ↑ FAR@95 ↓ TPR@10 ↑ Open maF1 ↑ Accuracy

SoftMax 44.47 96.93 8.85 55.50± 0.45 44.34 97.91 3.66 73.13± 0.12 94.10
OpenMax [5] 63.96 45.89 3.78 66.21± 0.16 63.67 80.53 6.54 67.81± 0.12 56.54

MC Dropout [21] 93.66 25.43 85.72 68.12± 0.20 86.11 77.50 70.13 71.13± 0.15 94.13
BNN SVI [36] 93.16 25.88 79.36 67.96± 0.19 85.63 71.52 66.14 71.57± 0.17 93.89

DEAR [3] 93.52 29.53 84.03 75.12± 0.27 87.12 71.32 72.21 88.07± 0.20 93.97
SOAR (Ours) 94.60 25.33 86.47 76.22± 0.32 88.10 69.57 72.75 89.55± 0.22 95.24

Table 1. Comparison with state-of-the-art methods. All methods are trained on UCF101 [63], and evaluated on two different open sets where
unknown samples are from HMDB51 [38] and MiTv2 [45], respectively. Performances with different backbones are listed in the supp.

AdRecon AdaScls UCF101 [63]+MiTv2 [45] UCF101 [63]+HMDB51 [38] KAUS UAFS
AUC ↑ FAR@95 ↓ TPR@10 ↑ Open maF1 ↑ AUC ↑ FAR@95 ↓ TPR@10 ↑ Open maF1 ↑ Var ↓ |Slope| ↓ Var ↓ |Slope| ↓

- - 91.73 28.84 78.96 68.55± 0.34 85.63 78.59 68.10 87.73± 0.22 6.12 75.51 6.17 75.52
X - 94.13 27.52 85.72 73.49± 0.35 87.49 69.41 72.31 89.52± 0.21 3.82 59.20 4.16 49.20
- X 93.58 26.43 83.16 72.16± 0.30 87.22 71.45 69.80 87.47± 0.19 4.43 63.62 4.49 63.63
X X 94.60 25.33 86.47 76.22± 0.32 88.10 69.57 72.75 89.55± 0.22 2.56 48.92 3.99 38.81

Table 2. Ablation study on the proposed AdRecon and AdaScls. The last four columns analyzes the scene bias under the known action in
unfamiliar scene (KAUS) and the unknown action in familiar scene (UAFS) scenarios.
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(f) SOAR (Ours)
Figure 4. Uncertainty distributions visualization on UCF101 [63] +
MiTv2 [45]. Our method achieves the best open-set and closed-set
uncertainty separation with the highest symmetric KLD. Uncertain-
ties are normalized to [0, 1] for better visualization.

adopted as the backbone. We follow [13] to use off-the-shelf
Places365 [85] pretrained ResNet50 [27] to extract video
scene feature and label. We implement the evidential learn-
ing head as a single-layer MLP followed by ReLU activation
following DEAR [3], implement the decoder as five consec-

utive 3D transpose convolutional layers and implement the
scene recognition head as a five-layer MLP following [13].
We use the SGD optimizer with an initial learning rate of
0.001, which decreases by a factor of 0.1 for every 20 epochs
with a total epoch of 50. All hyperparameters are determined
via a grid search: λd = 1, λs = 10, wrecon = ws cls = 1, and
ws guide = 0.1.

5.1. Comparison with the state-of-the-art

Our SOAR is superior to previous methods in two aspects:
lower scene bias and higher performance.
Scene bias evaluation is analyzed in Fig. 2, where two typi-
cal scenarios are evaluated: known action in unfamiliar scene
and unknown action in familiar scene. Our SOAR achieves
the lowest variance and absolute slope in both scenarios,
showing that our method is least affected by the scene bias
compared to previous methods. Notably, the performance
improvement is more significant when the testing scene dis-
tribution is distinct from the training (i.e., right part of Fig. 2a
and left part of Fig. 2b). Similar trends are also observed
when using Open maF1 for the scene bias evaluation as well
as using different backbones (details are in the supp.). Fur-
thermore, we show that our method surpasses several debias
methods [13, 2, 44] in the supp. Such results demonstrate
that our SOAR learns better scene-invariant action features
and strong scene-debiasing capability.
Performance comparison with the state-of-the-art is listed
in Tab. 1, where both OSAR and closed-set classification
performances are reported. The results reveal that our SOAR
outperforms all previous methods under all metrics in both
OSAR and closed-set classification tasks. Furthermore, we
visualize the uncertainty distributions in Fig. 4, where the
separation between closed-set and open-set uncertainties
is quantified with symmetric Kullback-Leibler divergence
(sym. KLD). We observe that our SOAR generates a notice-
able bimodal distribution and the highest sym. KLD between



Method Biased (Kinetics [10]) Unbiased (Mimetics [71])
Top1 ↑ Top5 ↑ Top1 ↑ Top5 ↑

EDL Baseline 91.11 99.27 25.32 69.62
DEAR [3] 91.18 99.54 34.58 75.00

SOAR (Ours) 92.37 99.69 37.18 78.92
Table 3. Classification accuracy on biased and unbiased datasets.

AdRecon AdaScls CKA [35] ↓
UCF101 [63] HMDB51 [38] MiTv2 [45]

- - 0.34 0.41 0.37
X - 0.27 0.37 0.34
- X 0.23 0.30 0.28
X X 0.23 0.28 0.27

Table 4. Feature similarity between the learned action feature f and
the scene feature fscene on the closed-set testing set (UCF101 [63])
and the open-set testing sets (HMDB51 [38] and MiTv2 [45]). The
similarity is measured with centered kernel alignment (CKA) [35].

AdRecon Bg. Unc. AUC ↑ FAR@95 ↓ TPR@10 ↑ Open maF1 ↑Est. Weight
- - - 91.73 28.84 78.96 68.55± 0.34
X - - 92.12 28.67 79.69 69.38± 0.34
X - X 93.66 27.59 82.13 72.46± 0.32
X X - 92.73 28.33 81.84 71.58± 0.33
X X X 94.13 27.52 85.72 73.49± 0.35

Table 5. Ablation study on the adversarial reconstruction on
UCF101 [63] + MiTv2 [45] datasets.

closed-set and open-set uncertainties. We further show our
SOAR achieves state-of-the-art OSAR performance with dif-
ferent backbones in the supp. Such a clear performance
advantage demonstrates the effectiveness of our method.

5.2. Ablation studies

Tab. 2 summarizes the ablation studies on AdRecon and
AdaScls. We have the following two observations. (1) Both
modules individually improve the performance over the EDL
baseline, and the combination of them leads to better perfor-
mance, validating their effectiveness individually and com-
plementarily. Notably, with only AdRecon, our method out-
performs all previous OSAR methods in terms of AUC. (2)
The performance improvement from AdaScls is lower than
that from AdRecon. We speculate that this is because the
predicted scene label may be noisy and mislead adversarial
learning. (3) The last four columns of Tab. 2 list the scene
bias analysis, showing that both modules alleviate the scene
bias.
Representation debiasing is analyzed in two aspects: out-
of-distribution (OOD) generalization ability and feature sim-
ilarity between the learned action feature and the scene fea-
ture. The OOD generalization is compared in Tab. 3, where
we follow DEAR [3] to use 10 classes on Kinetics for train-
ing and biased testing, and the same categories from Mimet-
ics [71] for unbiased testing. The results reveal that our
SOAR outperforms the EDL baseline and DEAR [3] in both
settings, showing our stronger debias capability. We further
compare the feature similarity between the learned action
feature and the scene feature in Tab. 4 with centered kernel
alignment (CKA) [35], which measures the learned represen-
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Figure 5. Qualitative results of AdRecon. The background estima-
tion removes foreground with large motions, and the uncertainty
map indicates the scene locations (i.e., yellow regions with high
uncertainty). AdRecon reduces the scene information within fea-
tures extracted by the backbone, leading to blurry surroundings
(region 1) shown in the 4-th column. As low reconstruction weight
is applied on the action foreground (i.e., u′

i,j,t = 0 in Eq. (4)), it
is neglected during reconstruction, leading to Gaussian-noisy-like
reconstruction results (region 2).

Ls cls Ls guide AUC ↑ FAR@95 ↓ TPR@10 ↑ Open maF1 ↑
- - 91.73 28.84 78.96 68.55± 0.34
X - 92.26 29.32 82.77 71.46± 0.32
X X 93.58 26.43 83.16 72.16± 0.30

Table 6. Ablation study on the adaptive adversarial scene classifica-
tion on UCF101 [63] + MiTv2 [45] datasets.

tation similarity between models trained on different datasets.
CKA is in range [0, 1], and larger value indicates higher simi-
larity. The results reveal our modules successfully reduce the
similarity between the learned action feature f and the video
scene feature fscene on all testing sets, showing our method
reduces the scene information in the extracted feature.
Adversarial scene reconstruction. Tab. 5 analyzes the ef-
fect of different designs in AdRecon. First, we observe that
simply adversarially reconstructing the raw video has minor
improvement on the performance, as such training encour-
ages the backbone to remove not only static scene informa-
tion but also foreground motion information. Subsequently,
our background estimation and uncertainty-weighted recon-
struction individually improve the performance, and the best
performance is achieved by combining both. Additional
qualitative results of AdRecon are provided in Fig. 5.
Adaptive adversarial scene classification. Tab. 6 shows
the effectiveness of AdaScls. Ls cls improves the OSAR
performance as it encourages the backbone to learn scene-
invariant features. Our proposed uncertainty-guidance loss



Ls guide further improves the performance, demonstrating
that the uncertainty map implicitly locates the foreground
and guides adversarial scene classification learning.

6. Conclusion
In this paper, we propose SOAR to mitigate scene bias

in OSAR. Specifically, we spot two typical scenarios where
current OSAR methods fail, and emprically show the scene
bias for existing methods. Our SOAR features an adversar-
ial scene reconstruction module and an adaptive adversarial
scene classification module. The former reduces the scene
information in the extracted feature to disturb video scene
reconstruction. The latter learns scene-invariant action fea-
tures by preventing video scene classification with a focus
on the action foreground. Our SOAR exhibits lower scene
bias while achieving state-of-the-art OSAR performance.
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